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Velocity correlations in a one-dimensional lattice gas: Theory and simulations
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In a one-dimensional fluid the macroscopic Navier-Stokes equations are no longer valid because of
long-time tails and diverging transport coefficients. By performing computer simulations on a one-
dimensional cellular automaton fluid we have investigated the ranges of times and densities where the
intermediate- and long-time behavior of the velocity correlation function is correctly described by
mode-coupling theory. The agreement is in general surprisingly good.
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I. INTRODUCTION

Is a one-dimensional fluid too pathological to be de-
scribed in terms of hydrodynamic concepts? The answer
is a conditional no, as we shall show in this paper. In the
context of lattice-gas cellular automata (LGCA’s), there
exist several models [1], whose dynamics conserve total
momentum, thus ensuring that the average flow velocity
u (r,t) is a slow hydrodynamic variable.

In such a fluid, the only possible slow modes are the
two sound modes. However, one expects that the “trans-
port coefficients” describing the damping of the sound
waves, vV?u, are more strongly divergent than in two-
dimensional fluids [2]. Consequently even the form of the
dissipative terms in the fluid-dynamic equations is un-
known.

For the one-dimensional model, to be considered in
this paper, there is evidence from theory and computer
simulations for the existence of these divergences, either
obtained by measuring the attenuation of long-
wavelength sound [1] or by directly simulating the
stress-stress correlation function [2,3]. In the former case
it was found that the damping constant v(k)~k ¢
diverges with ¢=~0.3-0.5 [1-3] in the long-wavelength
limit instead of approaching a finite transport coeflicient
vo- In the latter case, direct simulations of the stress-
stress correlation function have shown that its time in-
tegral v(t)~1t# diverges as t— o0, except for the half-
filled lattice. A self-consistent mode-coupling calculation
suggests that B=1, but the existing one-dimensional
simulations are too noisy to make any quantitative com-
parison [3]. Recently, Naitoh and Ernst [4] have consid-
erably improved the statistics by taking on the order of
10° runs per density point. Their results give strong indi-
cations that a tail with an exponent =1, as compared to
B=1, gives a better fit to the simulation data, but their
results are not yet conclusive. Here however, the ex-
tremely high accuracy of the moment-propagation
method [5-8] enables us to study the velocity autocorre-
lation function (VACEF) of a tagged particle in this fluid,
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but not the stress-stress correlation function.

Obviously, the VACF should approach zero for long
times, possibly through power-law decay. However,
when performing computer simulations on our one-
dimensional cellular-automaton (CA) fluid, the VACF of
a tagged particle appeared to approach to a negative con-
stant, as illustrated in Fig. 1 for a system of 500 lattice
sites on a line. It was this remarkable observation, sug-
gesting the existence of some type of conserved quantity,
that motivated the present research.

Our objective is not only to give a quantitative explana-
tion of this constant anticorrelation in one-dimensional
systems, but also to investigate the full time dependence
of the VACF from kinetic relaxation to the long-time tail
regime, using mode-coupling theory. This theory as-
sumes that the long-time relaxation can be described
through the decay of products of hydrodynamic modes
[9,10]. In particular, the combination of a shear mode
and a self-diffusion mode leads to the asymptotic long-
time tail £ ~%/2 of the VACF [2,6] for d > 2.
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FIG. 1. The simulated VACF in the one-dimensional self-
dual five-bits model at f=0.7 and L =500. The logarithm of
|¢n(2)| is shown vs time ¢. Note that the ¢ () is negative for
t=>12.
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However, there are no shear modes in one-dimensional
systems. Therefore mode-coupling theory will be formu-
lated (i) to include the sound modes, which yields sub-
leading asymptotic tails in higher-dimensional systems;
and (ii) to account for finite-size effects by restricting the
allowed wave numbers to the discrete set, determined by
the periodic boundary conditions.

In a previous publication, this extended mode-coupling
theory for finite systems has been compared in great de-
tail with computer simulations on LGCA’s in two and
three dimensions [11], and even in four dimensions [12].
In the present paper, this mode-coupling theory will be
compared with computer simulations on the so called
five-bits model, a LGCA defined on a line, where parti-
cles can have five different velocities.

J

II. MODE-COUPLING THEORY

Mode-coupling studies on the long-time behavior of
the VACF (v(¢)-v(0)) in LGCA’s have been considered
in Refs. [1-8]. The current of a tagged particle is inter-
preted as 3 u, (r,t)P(r,t), with u,(r,¢) the local fluid ve-
locity and P(r,t) the concentration of tagged particles.
The time dependence of these slowly varying fields is cal-
culated from the diffusion equation and the hydrodynam-
ic equations, where the flow field is decomposed into
shear modes and sound modes. In the present case, we
also take the sound modes into account. By a minor ex-
tension of the methods of Refs. [2,5] one obtains for the
normalized VACF ¢, (t)={v(t)-v) /{v?) the following
mode-coupling result:

Yylt)= u=f (d—1)3 exp[ — (D +v)g*t ]+ cos(cogt)exp[ — (D +%I‘)q2t] , (2.1)

dN q q

where N =pV is the number of fluid particles in a LGCA defined on a regular space lattice with ¥V sites and b possible
velocities per site. The reduced density is defined as f =p/b, with 0< f < 1. The sound velocity ¢ in a b-bits athermal
LGCA is given by dbc3 =73 .c? and D, v, and T denote respectively the self-diffusion coefficient, the kinematic viscosi-
ty, and the sound-damping constant. For classical fluids one finds Eq. (2.1), with (1—f) replaced by unity [13]. This
factor is a consequence of the Fermi exclusion rule in lattice gases. The first term, containing the contributions from
the shear modes, is absent in one dimension. For d =1 and 2, the transport coefficients are replaced by bare transport
coefficients D, v,, 'y, given by the short-time or Boltzmann approximation [9,10]. For superlong-time tails, Eq. (2.1)
leads to inconsistencies [10,14].

In the thermodynamic limit (¥ — o) all O(N ~!) terms disappear and the q sum in Eq. (2.1) is replaced by an in-
tegral over all q space,
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where t, =4(D +1T") /c3 is the hydrodynamic relaxation time, v, is the volume of the unit cell, and ,F, is the confluent
hypergeometric function. The first term of Eq. (2.2) is the leading long-time tail obtained in [5] (absent in the case of
d=1), and the second one represents the subleading contributions involving the sound modes. For dimensionality

d =1, the confluent hypergeometric function reduces to |F,(4,1—z)=e 7 and therefore the sound-mode contributions

are exponentially damped.
However, to discuss the finite-size effects in Eq. (2.1), it is instructive to transform the reciprocal-lattice sum in Eq.
(2.1) back to a sum over the direct lattice using the formula

) 5 . 5. UolpL ) 2 2
> exp[ —iq-rlexp[ —g*/4p ]—72 exp[ —|IL —r|%?] . (2.3)
q 1
Equation (2.3) represents a periodic function of r with a period L in d-space directions. It is a d-dimensional generaliza-
tion of a well-known formula in the theory of lattice vibrations [15]. The left-hand sum extends over all lattice points /
of an infinite regular space lattice, and the right-hand sum runs over all lattice points n of the corresponding infinite re-
ciprocal lattice with q=27n/L.

For a one-dimensional system, formula (2.3) allows us to transform (2.1) into an equivalent representation,
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} . (2.4)

It is a superposition of Gaussian wave packets, initially
excited in each replica of the system and propagating
with the speed of sound.

In computer simulations on LGCA'’s, one uses an equi-
librium molecular-dynamics (MD) ensemble with a fixed
number of particles N, one of which is tagged, and a fixed

total momentum P=0. The VACF obtained in this en-
semble will be denoted by

¢N(t)=<v(t).v(0)>MD/(U2)MD . (2.5)

In the canonical ensemble used to derive Eq. (2.1), one
has (P)=0, but the ensemble contains systems with
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FIG. 2. The finite-hydrodynamics prediction for the VACF
at f=0.7 and L =500 for ¢ on the order of 14 acoustic traversal
times.

P+0. Both correlation functions ¥ and ¢, can be relat-
ed by identifying ¢, with the VACF in the center-of-
mass frame, i.e.,

(VDY ()=(V'(t)-v')=(v(t)-v)—(P?)/N?, (2.6)

where v'=v—P/N. The momentum fluctuation is given
by (P2)=N(1—f){v?), where the factor (1— ) follows
from the Fermi exclusion rule. The two VACF’s are
therefore related by

dn(t)=19n(t)—(1—f)/N . (2.7)

In the thermodynamic limit, both functions approach the
infinite-system result (2.2). However, their long-time
behavior at finite N is quite different. Inspection of (2.1)
shows that all terms decay exponentially except for the
term (q=0), that yields (1—f)/N. So
PYy(oo)=(1—f)/N and ¢y(o0)=0. The function ¢(¢)
in mode-coupling approximation is therefore given by Eq.
(2.1), with the term (q=0) excluded from the summa-
tions. As an illustration of the theoretical results, we
have calculated the lattice sum (2.1) numerically for our
one-dimensional model (to be described in the next sec-
tion), with a speed of sound c¢,=V2 contained in a
volume of V=L =500 lattice sites with periodic bound-
ary conditions, and we have plotted in Fig. 2 the function
¢ (1), corresponding to the simulation data, over a time
period of about 14 acoustic traversal times. The acoustic
traversal time here is ¢, =L /cy=~354. A discussion of
this remarkable behavior and a comparison with simula-
tion results is the subject of the next section.

III. CA FLUID ON A LINE

We consider the self-dual five-bits model introduced by
d’Humieres, Lallemand, and Qian [1], which is an
athermal CA fluid in one dimension. Shear modes are ab-
sent and only sound modes contribute to Eq. (2.1).
Finite-size effects are expected to be more significant than
in higher-dimensional models. The system in this model
consists of V=L lattice points on a line. At each lattice
point there are five velocity channels (¢ =0, *+1, £2;
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b=35), each of which can be occupied by at most one par-
ticle. The collision rules for these particles are self-dual
(particle-hole symmetry),

(—D+H(+1D)+HO0) = (=2)+(+2)+O),
O)+(—D+H(+2) = (+ D)+ (=2)+(+2)F, (3.1)
O)+(+ D+ (=) =(=D)+(+2)+(—2),

where (i)' represents collisions taking place irrespective
of the presence of a “spectator” particle with velocity i at
the same lattice point. The collision rules for a tagged
particle are only different from those of fluid particles in
the sense that the outgoing tagged particle is scattered
with equal probability into any allowed outgoing velocity
channel [6]. Consequently, in the limit of a completely
filled lattice (f=1), the tagged particle performs a ran-
dom walk with equal probabilities for each of five dis-
placements, A=0, =*1, +2. Hence the diffusion
coefficient is D =1[2X1+2X4]=1, and the VACF van-
ishes for all # = 1. For general densities, no exact results
for the transport coefficients are known.

To compare our simulation results for this model, we
need the speed of sound c¢,=V2, as follows from
bdc§ =3 .c? for athermal LGCA’s, and the transport
coefficients. In the Boltzmann approximation, the
sound-damping constant Iy, [1] and self-diffusion
coefficient D, [2,16] are given by

3 7

To=%=Jor0—p 10
1
Dy=cj 7—% , (3.2)

A=1—[(1=b) 1" 1—H1—(1—F*7'],

with b=5. The VACF in the Boltzmann approximation
is given [16] by the exponential function,
¢p(t)=(1—A)'=exp(—1t/t,) which defines the mean free
time ¢,.

We first return to Fig. 1 and consider the simulation
data for ¢,(2), obtained for a system of L =500 sites at
reduced density f=0.7. The data show three different
types of behavior in the time interval considered: an ex-
ponential decay for ¢ <2 which is well described by the
Boltzmann approximation ¢ (¢); another exponential de-
cay for 3 <t <15 which is expected to be explained by the
sound-mode contributions, and a negative plateau for
t > 20, which clearly shows the finite-size effects. The ini-
tial exponential decay is not very well visible in Fig. 1.
The two distinct exponential regimes are more clearly
exhibited in Fig. 3, where logo[¥y(2)]
=logo[¢n(2)+(1—f)/N] is plotted versus ¢ for a rather
large system of L =2000 sites at reduced density f=0.7.
In Fig. 3, the simulation data are also compared with the
mode-coupling prediction (2.2) for the infinite one-
dimensional system (solid line in Fig. 3), i.e.,

a—-5£
ScofV/ mt,t

Here the hydrodynamic relaxation time #, ~3.1 indicates

o(1)~ exp(—t/t,) . (3.3)
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Logy,[0,(t) +(1-£) /N]

FIG. 3. The logarithm of ¥y (t)=¢x(¢)+(1— f)/N vs time in
a one-dimensional model for system size L =2000 at density
f=0.7. The symbols @’s represent the results of computer
simulations. The solid and dotted curves denote results ob-
tained, respectively, from (extended-) infinite-mode-coupling
theory in Eq. (2.2) and the finite hydrodynamics in Eq. (2.1).

the crossover from kinetic relaxation, ¢z(?)
=exp(—1t/ty), with t;=0.45, to hydrodynamic relaxa-
tion.

Next we interpret the theoretical result of Fig. 2, which
contain only sound-mode contributions. It is instructive
to consider the finite hydrodynamics result ¢, (z)
transformed back to real space, as given by Eq. (2.4).
This formula is very well suited to discuss the behavior of
dn()=¢n(t)—(1—f)/N in the time interval 2<t <z,
where t,=L /c, is the acoustic traversal time. The
right-hand side of Eq. (2.4) is a superposition of an
infinite number of Gaussian wave packets, traveling with
the speed of sound, initially excited in each replica and
produced by the periodic boundary conditions. The time
difference between the adjacent peaks is given by the
acoustic traversal time ¢,. The width of these peaks is in-
creasing as 1/4(D+ 1)t due to the diffusion of the
tagged particle and the damping of sound modes. The
relative magnitude of the peak separation and peak width
determines whether the negative plateau or the damped
oscillations can be observed in a specific time region. In
particular, in the time interval satisfying the inequalities

VAD+IT)t <<cot <<L or t,<t<t, , (3.4)

Yn(2) vanishes and ¢ (¢) shows very markedly a negative
plateau, given by the opposite of the ¢ =0 term, i.e.,
$piae= —(1—f)/N. Here the spreading \/4(Dy+ 1)t
of the wave packets is small compared to the propagation
distance cyt and simultaneously ¢ <t,. For times # much
larger than the acoustic traversal time, ¢, (¢) again ap-
proaches zero.

To verify the predictions, we carried out a simulation
up to much longer times, and obtained the results shown
in Figs. 4(a)—4(c). There is excellent agreement between
simulations and theory. In the data of Fig. 4(a) for the
L =500 system (triangles), there is a negative plateau for
25<t <275, and another one for ¢=>430. They are
separated by a sharp peak, occurring at the acoustic
traversal time t, =L /c,=354. This constant anticorrela-
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FIG. 4. (a) The simulated values of the VACF in the one-
dimensional model for L =500( A ) and L =10° (®) at f=0.7.
The dotted curve shows the finite hydrodynamics prediction for
L=500. The solid curve represents the extended mode-
coupling prediction (2.2) for an infinite system. The simulation
data and finite hydrodynamics results clearly exhibit the nega-
tive plateau. (b) The VACF in the one-dimensional model at
f=0.7 and L=2000. The solid curve represents the finite hy-
drodynamics prediction and the dots represent computer simu-
lations. Both results show much wider negative plateaus than
those in (a). (c) The VACF in the one-dimensional model at
f=0.7,and L=50. The solid curve represents the finite hydro-
dynamics prediction and the black dots represent computer
simulations. Both results show damped oscillations.
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tion can be understood as follows. Since the tagged par-
ticle is given an initial velocity of ¢, and the ensemble is
prepared in such a way that the total momentum van-
ishes, each fluid particle has on the average a velocity
—c /N, yielding the anticorrelation ¢, = —(1—f )3 /N,
where the factor (1— f) comes from the Fermi exclusion.
In the time interval satisfying Eq. (3.4), the fluid momen-
tum (without the tagged particle) is essentially a constant
of motion. Figure 4(a) also shows the simulation data for
a system of V=L =10 lattice sites (black circles) at the
same density. Here finite-size effects are completely
negligible and the simulations coincide with the theoreti-
cal result Eq. (2.2) for the infinite system (solid line).
Again, there is excellent agreement between simulations
and the extended mode-coupling theory. Similar results,
shown in Fig. 4(b), are obtained for the larger system of
L =2000 sites at f=0.7, with an acoustic traversal time
t,=1414.

To confirm the damped oscillations in Fig. 2, we per-
formed a simulation for much longer times on a much
smaller system of L =50, with t,=35.4, in which the
VACEF is expected to give damped oscillations at much
earlier times than in the L =500 system. The mode-
coupling results, shown in Fig. 4(c), are again in excellent
agreement with the computer simulations. The oscilla-
tions are due to interference effects of the tails of the
diffusive sound-wave packets, which have already arrived
in the reference region from its neighboring replicas.

The negative plateau value ¢, =(1~f)/N may also
be viewed as an effective finite-size correction, applied to
the simulation data, i.e., the ‘“corrected data” are
Yy(t)=¢y(t)+ ¢, The reason is that ¥y and ¢ are
given by the unconstrained and constrained q sum in Eq.
(2.2), respectively, including and excluding the term
(q=0). The unconstrained sum gradually approaches to
the q integral of the infinite system, given by (2.2) or (3.3).
Therefore, in Fig. 5 we show the same data as in Figs.
4(a) and 4(c) in a logarithmic plot, which gives a blowup
of 100 times the VACEF values in Fig. 4 in the range of ¢

Logyg[0y(t) +(1-£) /N]

FIG. 5. The corrected data for finite hydrodynamics and MD
data at different system sizes, Yy(t)=¢xn(2)+(1—f)/N at
f=0.7 (% for L=50, A for L =500, and @ for ¥'=10°), are
collapsed with the infinite system result ¢(z) [solid line, Eq.
(2.2)]. The finite hydrodynamic prediction (2.1) are shown as
dashed lines. The standard deviations are denoted by thin verti-
cal lines (L =500) and thick ones (L =10°).
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values of 20-30 time steps. This illustrates the extent to
which the data for different system sizes can be collapsed
with the result for the thermodynamic limit. Collapse is
obviously restricted to time intervals ¢ <1lz,, guarantee-
ing the absence of all interference effects of sound waves
with their periodic images. For system sizes L =50 and
500, these times are approximately 18 and 177.

Indeed, Fig. 5 shows the collapse of the corrected MD
data for different system sizes with the infinite system re-
sult (2.2) in the appropriate time interval ¢t <17. For the
smallest system (L =50), the MD data (denoted by an as-
terisk and shown without error bars) and the finite hydro-
dynamics results should deviate from the infinite system
curve for ¢t 2 1t,, as explained in Fig. 4, but they remain
in agreement with the mode-coupling theory at finite N
[see Fig. 4(c)]. In the remaining data, the error bars in-
crease strongly for ¢#>17 because theory predicts that
¢ (1) becomes negative for t 212 (MD 11), 15 (MD 14),
and 26 (MD 84) for the system sizes L =500, 2000, and
10°, respectively. The numbers (MD x) denote the ob-
served zero crossings in the MD simulations. The quanti-
ty beore =0 N +(1—f)/N vanishes exponentially fast and
becomes small compared to the absolute errors, which
are of order 10~ for all system sizes.

Finally, in Fig. 5 we note that the very large system
data (L =10°) start to decay more slowly than described
by the mode-coupling theory with bare transport
coefficients after about 20 time steps. This might be an
indication of divergent transport coefficients, as discussed
in the Introduction. The self-diffusion coefficient in a
one-dimensional fluid does not seem to diverge, because
the time integral over the VACEF (3.3) is expected to con-
verge as long as the longitudinal viscosity v(z)~t? is
growing more slowly than linearly (8 <1). Of course one
should realize that we have reached the limits of our sta-
tistical accuracy when the correlation function has de-
cayed to about one 1073 of its initial value. For ¢ > 20,
the relative error in the uncorrected data ¢, (¢) rapidly
increases from 25% (t=22), to 70% (t=25) and to
130% (¢t =30).

To substantiate the expected relation between the
above deviations and the divergence of one-dimensional
transport coeflicients, a short discussion of the stress-
stress correlation function is required. The long-time
behavior of the one-dimensional stress-stress correlation
function (whose time sum determines the longitudinal
viscosity or sound damping) behaves very differently from
the one-dimensional VACF, according both to the simu-
lations and to mode-coupling theory [2,3]. For the
VACF, the contributions of the diffusion and sound
modes lead in one dimension to the exponentially decay-
ing result (3.3).

In the stress-stress correlation function ¢,(t), two op-
posite sound modes combine to produce an algebraic
long-time tail, do¢ ~ %, with an exponent a. The theoreti-
cal prediction from bare mode-coupling theory (sup-
posedly applicable on some intermediate time scale) is
a=1. The asymptotic self-consistent mode-coupling
theory predicts a=2 [2]. Measurements of sound-wave

in computer simulations seem to suggest

damping
a~0.5. [1]. Direct simulation of the stress-stress corre-
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lation function of sufficient statistical accuracy are not
yet available.

The longitudinal viscosity itself, v(z)=3!_qp, (1),
diverges as dyt'~%/(1—a). However, the amplitude d,
of the tail is proportional to some power of |1—2f],
which therefore vanishes for the half-filled lattice, because
the amplitude of the tail is vanishing. Consequently, the
longitudinal viscosity is not expected to diverge for the
half-filled lattice. If the deviations of the MD data from
mode-coupling theory for ¢#>18 in the large system
(L =10° in Fig. 5) are indeed related to the divergence of
the viscosity, then simulations of the same statistical ac-
curacy for the half-filled lattice should not show such de-
viations. This is indeed the case, as illustrated in Fig. 6
for density f =1 and system size L =10°.

We also remark that there exist some unexplained
small, but systematic deviations in the overall numerical
factor between the long-time behavior of the MD data
and the mode-coupling prediction (3.3). This occurs in
the time interval (3 <7 <18 in Fig. 5 and ¢ >4 in Fig. 6)
where mode-coupling theory with bare transport
coefficients is supposed to be valid.

In summary, we conclude that the simulated values of
the VACF are well described by the mode-coupling
theory with bare transport coefficients, including the
finite-size effects and the interference effects from period-
ic boundaries. The bare mode-coupling theory breaks
down after a crossover time f,, where the divergence of
the longitudinal viscosity seems to control the long-time
behavior of the VACF. At the reduced density f=0.7,
the crossover occurs after ¢, =~20 time steps, or approxi-
mately 45 mean free times.

The crossover argument is consistent with the simula-
tion data for the half-filled lattice, where the longitudinal
viscosity does not diverge, according to bare mode-
coupling theory. Consequently the simulation data and
the bare mode-coupling results should be and are indeed
in agreement over the total time interval over which
simulations could be carried out.
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Logy,[dy(t)+(1-£) /N]

FIG. 6. The simulated VACF at density /=1 and system
size L =10° compared with mode-coupling theory. The large
time deviations between theory and simulations, seen in Fig. 5,
are absent in the half-filled lattice, where algebraic tails are ab-

sent.

Recently (see [14]) evidence has been given that self-
consistent mode-coupling theory is able to describe the
superlong-time regime (¢ >¢,) in two-dimensional lattice
gases. There are strong indications of the validity of
self-consistent mode-coupling theory in one dimension,
but a definite answer can only be given when more accu-
rate simulations of the stress-stress correlation function
become available.
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